Evaluation of NHRCM highresolution climate simulations over the Philippines

Faye Abigail T. Cruz¹ Hidetaka Sasaki²

¹ Manila Observatory, Quezon City, Philippines
² Meteorological Research Institute, Tsukuba, Japan

International Workshop on Climate Downscaling Studies

2-4 October 2017, International Congress Center EPOCHAL Tsukuba, Japan

Philippines : a hotspot for climate risk

- High climate risk: high exposure, high vulnerability, lack of coping and adaptive capacities (World Risk Report, 2016)
- High-resolution climate projections critical for appropriate adaptation measures, especially for areas along the coast, with complex topography
- Currently available projections from single GCM, RCM, emission scenario
- Projections from multiple GCMs, RCMs and RCPs recommended to address uncertainties

Source: http://weltrisikobericht.de/wp-content/uploads/2016/08/WorldRiskReport2016.pdf

Figure source: Manila Observatory Data: JTWC

SEACLID CORDEX-Southeast Asia

The Southeast Asia Regional Climate Downscaling (SEACLID) / CORDEX Southeast Asia Project

- Aims to produce high-resolution climate projections over SE Asia from multiple GCMs, RCMs and RCP scenarios (to be distributed via ESGF), and to enhance climate research and capacity in the region
- Website: http://www.ukm.my/seaclid-cordex

Climate simulations conducted under SEACLID / CORDEX Southeast Asia Project

- Sensitivity tests using RegCM4 for present climate done (Juneng et al. 2016, Ngo-Duc et al. 2017, Cruz et al. 2017)
- Ongoing analysis of projection simulations

Country	GCM	RCP	RCM	Country	GCM	RCP	RCN
Vietnam	CNRM-CM5	RCP8.5, 4.5	RegCM4	Australia	CNRM-CM5	RCP8.5	CCAN
Philippines	HadGEM2	RCP8.5, 4.5	RegCM4	Australia	CCSM4	RCP8.5	CCAN
Thailand	illand MPI-ESM-MR RCP8.5, 4.5	Australia	ACCESS1.3	RCP8.5	CCAN		
Thailand	EC-Earth	RCP8.5, 4.5	RegCM4	Hong Kong SAR	CCSM or CESM	RCP8.5, 4.5	WRF
Indonesia	CSIRO MK3.6	RCP8.5, 4.5	RegCM4	United Kingdom	HadGEM2-ES	RCP8.5, 4.5	PRECI
Malaysia	CanESM2	RCP8.5, 4.5	RegCM4	South Korea	HadGEM2-AO	RCP8.5, 4.5	WRF
Malaysia		RCP8 5 4 5	RegCM4	Sweden	CNRM-CM5	RCP8.5, 4.5	RCA3
Malaysia		PCP8 5 4 5	RegCM4	Sweden	HadGEM2-ES	RCP8.5, 4.5	RCA3
iviaiaysia	GI DL-ESIVIZIVI	NGF0.0, 4.0		Germany	MPI-ESM-LR	RCP8.5. 4.5	ROM

Japan

MRI-AGCM60

RCP8.5.4.5

NHRC

Application of NHRCM over Southeast Asia and the Philippines

Objective : To generate highresolution multi-scenario climate projections for Southeast Asia (25 km) and the Philippines (5 km) using NHRCM (Sasaki et al. 2008)

Methodology :

- Boundary conditions
 - ERA-Interim
 - MRI AGCM3.2
- 14-month runs (from April to May of the following year) in parallel, discarding initial 2 months as model spin-up
- Spectral nudging used

Table 1. List of experiments

Domain	Resolution	Boundary Condition	Time Period	Scenario
SE Asia	25 km	ERA-Interim (~75 km)	1989-2008	
SE Asia	25 km	MRI-AGCM60	1981-2000	
Philippines	5 km	NHRCM (25 km)	1981-2000	
SE Asia	25 km	MRI-AGCM60	2020-2039	RCP 8.5
SE Asia	25 km	MRI-AGCM60	2080-2099	RCP 8.5
Philippines	5 km	NHRCM (25 km)	2080-2099	RCP 8.5
SE Asia	25 km	MRI-AGCM60	2080-2099	RCP 2.6
SE Asia	25 km	MRI-AGCM60	2080-2099	RCP 4.5
SE Asia	25 km	MRI-AGCM60	2080-2099	RCP 6.0

Analysis

- Observation data
 - APHRODITE (Yasutomi et al. 2011, Yatagai et al. 2012)
 - PAGASA stations (46)
- Focus over the Philippines
 - Spatial patterns
 - Seasonal variability
 - Regional means based on climate types

Philippine Climate Classification (Modified Coronas Atlas)

	\mathcal{I}		

Type I climate (two pronounced season with dry period from November to April and wet period from May to October)

Type II climate (no dry season with a very pronounced maximum rainfall during the months of November–December);

Type III climate (seasons not very pronounced with a relatively dry period from November to April, as in Type I);

Type IV climate with rainfall more or less evenly distributed along the year

http://kidlat.pagasa.dost.gov.ph/cab/climate_change/images/ClimateMap.JPG

Evaluation of model performance

NHRCM captures the seasonal spatial patterns in rainfall and winds, especially along coastlines and high topography but overestimates rainfall in the windward side of mountains.

Evaluation of model performance : Comparison with ERA-Interim

30N

20N ·

10N · 5N · EQ ·

correlation.

Evaluation of model performance

Tendency to underestimate the number of wet days, especially during the wet season, but overestimate the daily rainfall intensity

30N 25N

20N ·

10N · 5N · EQ ·

> Cruz, F. T., and H. Sasaki, 2017. Simulation of present climate over Southeast Asia using the Nonhydrostatic Regional Climate Model. SOLA, 13, 13-18, doi:10.2151/sola. 2017-003.

Results: Validation of 20N present-day temperature

NHRCM is able to represent the spatial patterns of temperature

 Reduced cold bias in the global model (AGCM60)

Results: Validation of present-day temperature

Colder bias in NHRCM5 in Luzon and Mindanao islands, compared with NHRCM25

Model evaluation : Temperature Annual Cycle

Results: Validation of present-day rainfall

- Reduced the wet bias in Luzon from the global model
- Tendency to overestimate rainfall over mountain areas
- Dry bias on the eastern section during the southwest monsoon season (JJA)

Results: Validation of present-day 850mb (zonal) winds

Close representation of winds; stronger southwesterlies in NHRCM25

Model evaluation : Rainfall Annual Cycle

Seasonal mean bias, correlation per type (relative to APHRODITE)

NHRCM5

• increased cold bias but improved spatial correlation

• more areas with dry bias, minimal improvement in correlation

Results: Projected temperature changes in far-future (RCP8.5)

- Comparable changes regardless of resolution but some areas warmer in NHRCM
- At end of 21st century, the Philippines (SE Asia) significantly warmer
 - Consistent warming across all seasons (relatively high warming in MAM (summer))

Results: Projected rainfall changes in far-future (RCP8.5)

 At the end of 21st century, more areas with significantly wetter conditions at higher resolution, particularly over high terrain

Results: Projected seasonal rainfall changes in farfuture (RCP8.5)

- Highest rainfall change (wetter) in DJF (dry season in Type1, wet season in Type2)
- More drier areas in MAM, particularly eastern Luzon and central Mindanao
- Enhanced wet conditions in JJA in NHRCM5
- Contrasting changes in Mindanao between NHRCM25 and NHRCM5 in JJA and SON

Results: Projected rainfall changes in far-future (RCP8.5)

Summary

- Results indicate applicability of NHRCM in providing high-resolution climate information over the Philippines and Southeast Asia
 - NHRCM can reduce the wet and warm biases in ERA-Interim, and may have higher spatial correlations in some regions (e.g. Philippines, Maritime Continent).
- In the Philippines, NHRCM projections indicate significant warming (3.3 °C) and rainfall increases (10.6 to 13.4 %) in the far-future under RCP 8.5 scenario
 - Projected increase in days with extreme rainfall found over most land areas
- Look into more detail on the underlying mechanisms behind the influence of model resolution on the simulated climate and changes
- Results of this study will contribute to the ongoing efforts to increase climate change information in the region, e.g. Southeast Asia Regional Climate Downscaling/CORDEX Southeast Asia project

Thank you for your attention.

Acknowledgments

- Meteorological Research Institute
- Japan Meteorological Agency
- Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan
- F. Cruz was an International Research Fellow of the Japan Society for the Promotion of Science (JSPS)
- JSPS KAKENHI Grant Number 15F15028
- SOUSEI Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan