

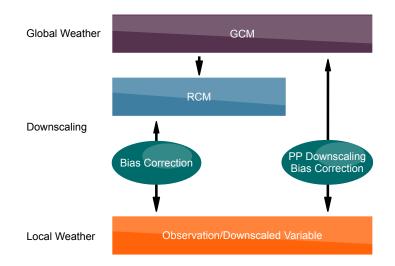
Challenges in Downscaling Research

Douglas Maraun Wegener Center for Climate and Global Change University of Graz

"Researchers are still struggling to develop tools to accurately forecast climate changes for the twenty-first century at the local and regional level." *Nature Editorial*, 2010

"Time to Adapt to a Warming World - But Where's the Science?" Kerr, Science, 2011

Regional Modelling Chain



VALUE Evaluation Results

Bias Correction Limitations

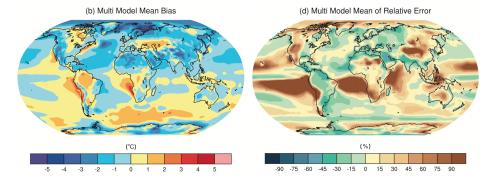
Douglas Maraun Process-Informed Bias Correction

VALUE Evaluation Results

Bias Correction Limitations

Douglas Maraun Process-Informed Bias Correction

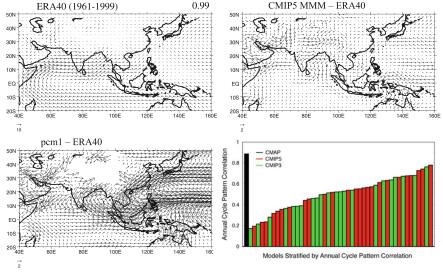
Temperature and precipitation biases CMIP5, multi-model mean



Biases are (not just wrong numbers, but) surface climate expressions of climate model errors!

Flato et al., IPCC AR5, 2013

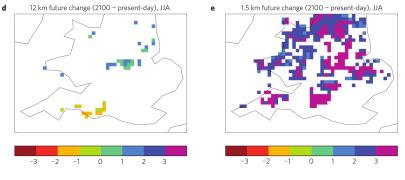
Circulation Bias Example: Monsoon



Sperber et al., Clim. Dynam., 2013

Small-Scale Bias Example: Extreme Rainfall

Projected change of summer subdaily precipitation extremes



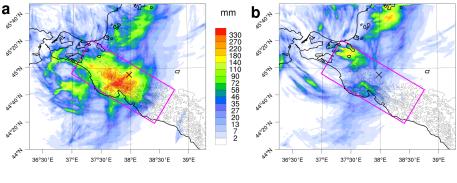
left: RCM at 12km resolution;

right: RCM at 1.5km simulation

Kendon et al., Nat. Clim. Change, 2014

Case Study: Krymsk Event, Jul 2012

Precipitation response to SST trend, ensemble mean daily precipitation total



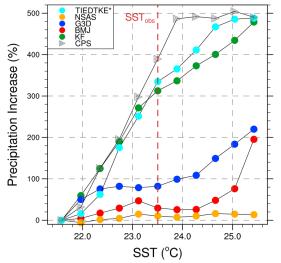
observed SST

cold SST

Meredith et al., Nat. Geosci., 2015

Resolved vs. parameterised deep convection

High uncertainty due to representation of vertical velocities in conv. parameterisations



Meredith et al., J. Geophys. Res., 2015

Summary Dynamical Modelling Issues

- The resolution of current generation GCMs is too low to realistically simulate the large-scale atmospheric circulation.
- Climate models with parameterised convection struggle simulating a plausible response of extreme precipitation to external forcing.

For a successful downscaling, driving dynamical models are required that realistically simulate present climate conditions and credibly simulate the response to global warming at all relevant scales.

VALUE Evaluation Results

Bias Correction Limitations

Douglas Maraun Process-Informed Bias Correction

Framework paper

@AGU PUBLICATIONS

Earth's Future

RESEARCH ARTICLE

10.1002/2014EF000259

Key Points:

- VALUE has developed a framework to validate and compare downscaling methods
- The experiments comprise different observed and pseudo-reality reference data
- The framework is the basis for a comprehensive downscaling comparison study

Corresponding author:

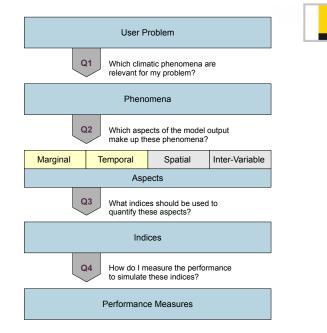
Douglas Maraun, dmaraun@geomar.de

VALUE: A framework to validate downscaling approaches for climate change studies

Douglas Maraun¹, Martin Widmann², José M. Gutiérrez³, Sven Kotlarski⁴, Richard E. Chandler⁵, Elke Hertig⁶, Joanna Wibig⁷, Radan Huth⁸, and Renate A.I. Wilcke⁹

¹GEOMAR Heimholtz Centre for Ocean Research Kiel, Kiel, Germany, ⁵School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK, ³Institute of Physics of Cantabria, IFCA, Santander, Spain, ¹Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland, ³Department of Statistical Science, University College London, London, UK, ⁶Institute of Geography, University of Augusburg, Augsburg, Germany, ⁷Opeartment of Neteorology and Climatolog, University of Lody, Lodo, Poland, ⁸Department of Physical Geography and Geoecology, Faculty of Science, Charles University and Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, ⁹Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrkäping, Sweden

Validation tree



UN

Examples of Indices and Performance Measures

www.value-cost.eu/reports

Marginal Distributions

Index	Performance Measure
Mean, Variance, 98% Percentile	(relative) bias

Temporal Dependence

Index	Performance Measure
Spell statistics	Bias

Spatial Dependence

Index	Performance Measure
Decay lengths of correlation/tail dependence	(relative) bias

Multivariate Dependence

Index	Performance Measure
Joint threshold exceedances	(relative) bias
Variable conditioned on large-scale circulation	(relative) bias

VALUE Evaluation Results

Validation experiments

www.value-cost.eu/validation

Perfect Predictor

Predictors/boundary conditions from ERA-Interim Reanalysis

Pseudo Reality

Predictands from regional climate models (Present and future)

GCM-Predictors

Predictors/boundary conditions from global climate models

Maraun et al., Earth's Future, 2015

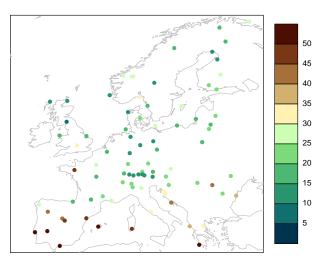
VALUE Portal (open upload!)

www.value-cost.eu/validationportal

VALUE Validation Portal					
	T Results filtering				
ff Home	III Table				
 Datasets Experiments 	Q Map				
 Experiments Indices & 					
measures	Validation results for prediction: douglas - Experiment_1a - precip - VGLMGAMMA				
Processes	Season Index or measure Measure or index type				
Methods	Color DJF v Mean-mean v Mean.blas v				
🏝 Upload	Season Index or measure Measure or Index type				
Validation	Radius V V				
og Jobs	noulus				
CCOSE	Season Index or measure Measure or index type				
× Logout	Opacity V V				

Many thanks to José Gutierrez, Sixto Herrera, Daniel San Martín, Joaquín Bedia

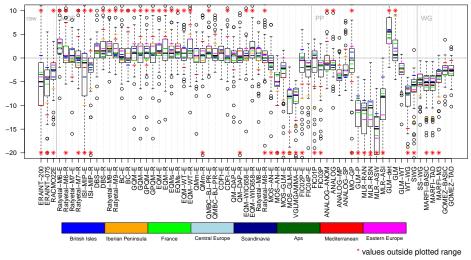
Precipitation - mean annual maximum dry spell Observed climate [days]



Maraun et al., Int. J. Climatol., 2017

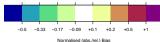
UNI GRAZ

Precipitation - mean annual maximum dry spell Biases across all stations [days]

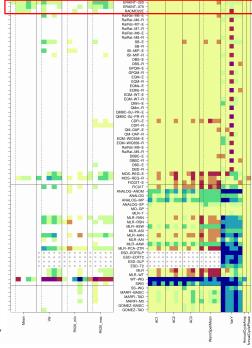


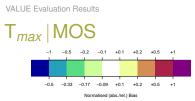
Maraun et al., Int. J. Climatol., 2017

T_{max} | Raw Model Data

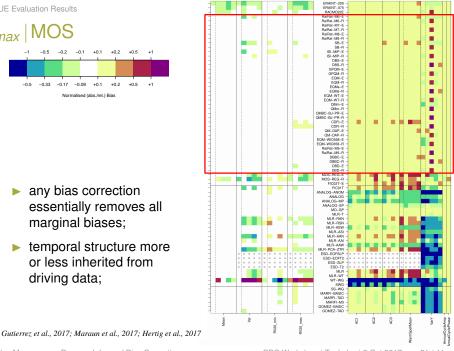


- Reanalyses slightly underestimate marginal properties;
- Reanalyses slightly too smooth in time;
- RCM adds value, but overestimates MAM interannual variability.

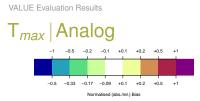




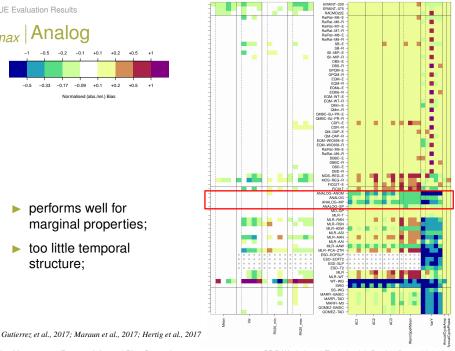
- any bias correction essentially removes all marginal biases;
- temporal structure more or less inherited from driving data;



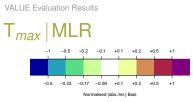
Process-Informed Bias Correction Douglas Maraun



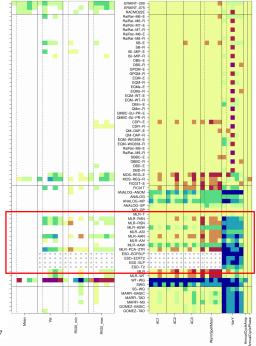
- performs well for marginal properties;
- too little temporal structure;

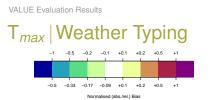


Process-Informed Bias Correction Douglas Maraun

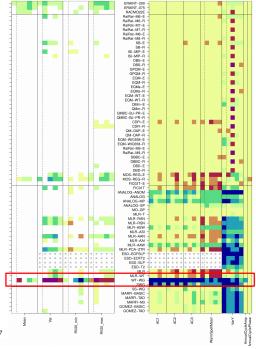


- means okay, other marginal properties else underestimated;
- temporal structure too smooth, for white noise randomisation too noisy;
- interannual variability underestimated;

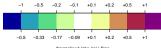




- depends very much on the predictors and implementation;
- typically rather badly;

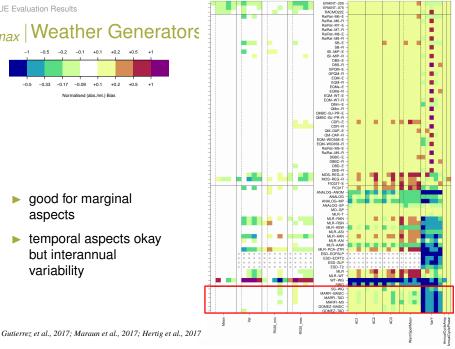


T_{max} | Weather Generators

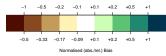


Normalised (abs./rel.) Bias

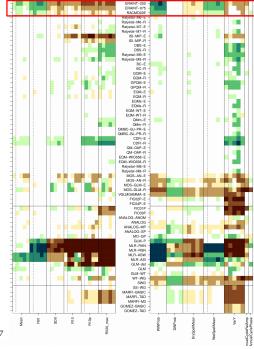
- good for marginal aspects
- temporal aspects okay but interannual variability



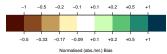
Precip | Raw Model Data



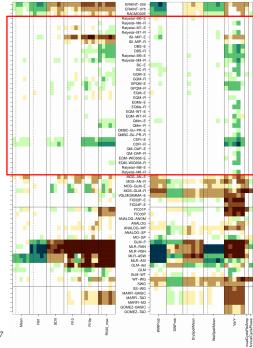
- Reanalyses slightly overestimate means and wet day frequency, all other marginal aspects underestimated;
- wet spells too long, dry spells too short; interannual variability too weak;
- RCM adds value for many aspects;



Precip | MOS



- okay for means; for extremes strong dependence on implementation;
- temporal aspects much improved by wet day correction;
- interannual variability too large;



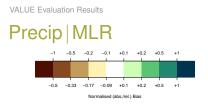
- well performing for most marginal aspects;
- okay for temporal aspects;
- interannual variability depends strongly on implementation;

GPQM-R EQM-E EQM-R EQMs-E EQMs-B EQM-WT-E EOM-WT-R OMm-E QMm-R QMBC-BJ-PR-E QMBC-BJ-PR-R CDE-E CDFt₋B QM-DAP-E QM-DAP-R EQM-WIC658-E EQM-WIC658-R Ratvetal-M8-E Raturdal-MR-R MOS-AN-E MOS-AN-R MOS-GLM-F MOS-GLM-R VOLMOAMMA_F FIG02P-E FIC04P-E FIC01P ANALOG ANALOG-MP ANALOG-SP GLM-P MLR-RAN MLR_RSN MLR-ASW MLR-ASI GI Mudet GLM GLM-WT WT-WG SWG SS-WG MAREL-RASIC MARFI-TAD MARFI-M3 GOMEZ-BASIC GOMEZ-TAD ŝ ē

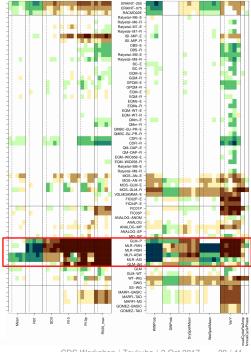
ERAINT-075 RACMO22E Ratyetal-M6-E Ratyetal-M6-R

Ratyetal-M7-E -Retyetal-M7-R -ISI-MIP-E -ISI-MIP-R -DBS-E -DBS-R -

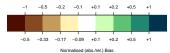
Ratyetal-M9-E Ratyetal-M9-R BC-E BC-R GQM-E GQM-R GPQM-E



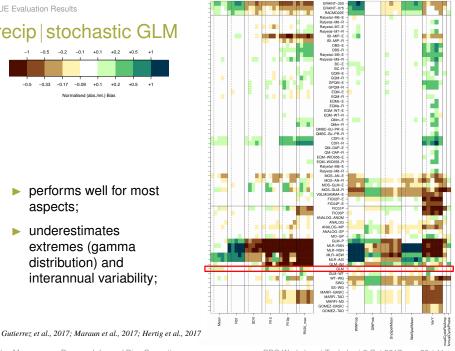
MLR is not suitable for downscaling daily precipitation.



Precip | stochastic GLM

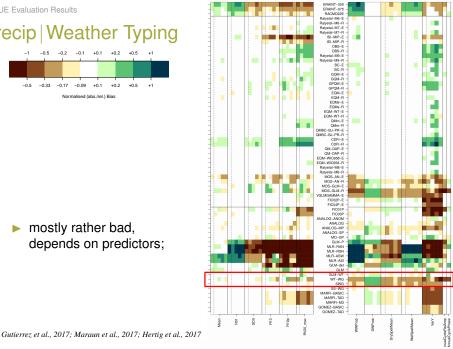


- performs well for most aspects;
- underestimates extremes (gamma distribution) and interannual variability;



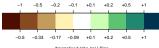
Precip | Weather Typing

mostly rather bad, depends on predictors;



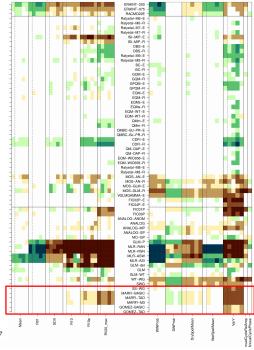
Process-Informed Bias Correction Douglas Maraun

Precip | Weather Gen.



Normalised (abs./rel.) Bias

- good for calibrated aspects;
- underestimates extremes and interannual variability.



Summary VALUE Evaluation

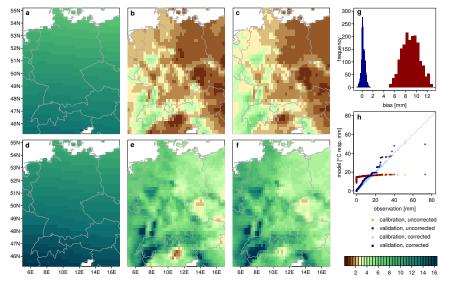
- MOS/Bias correction removes marginal biases, temporal structure is inherited by driving models;
- most PP/ESD methods have difficulties simulating anything beyond the mean; for precipitation stochastic GLMs are required.
- weather generators get everything right they are calibrated for, everything else wrong.
- Special Issue in Int. J. Climatol. (forthcoming)

VALUE Evaluation Results

Bias Correction Limitations

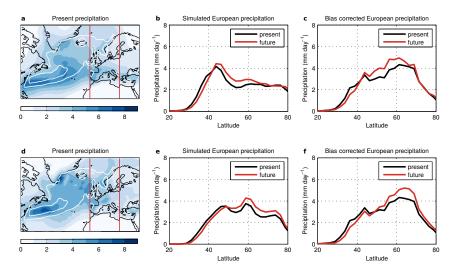
Douglas Maraun Process-Informed Bias Correction

Validation Problem



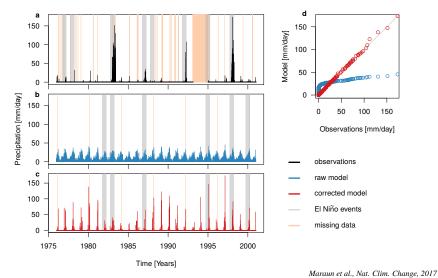
Maraun et al., Nat. Clim. Change, 2017

Storm Track Bias



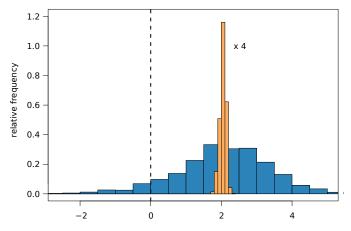
Maraun et al., Nat. Clim. Change, 2017

Representativeness ENSO Variability



BC & Downscaling: Temperature Inversion

Temperature difference between two sites in Central Valley & Sierra Nevada, California; blue: observated temperature difference; orange: bias corrected GCM difference



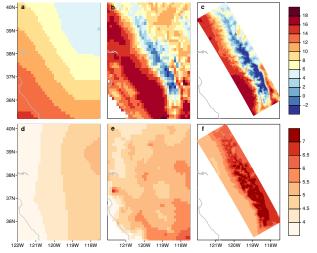
temperature difference [°C]

Maraun, J. Climate, 2013; Maraun et al., Nat. Clim. Change, 2017

Bias Correction Limitations

BC & Downscaling: Elevation Depend. Warming

MAM; top: present, bottom: climate change signal. Left: raw GCM; center: QM corrected; right: 3km RCM



Maraun, J. Climate, 2013; Maraun et al., Nat. Clim. Change, 2017

Douglas Maraun Process-Informed Bias Correction

CDS Workshop | Tsukuba | 3 Oct 2017 39 / 41

Summary Bias Correction Limitations

- Bias correction requires realistic, credible and representative input.
- Applying bias correction requires physical understanding, otherwise artefacts are likely to occur.

Summary

- For successful downscaling, the driving dynamical models need to realistically simulate present climate conditions and credibly simulate the response to global warming at relevant scales.
 - \rightarrow Process-based dynamical model selection.
- Statistical downscaling/bias correction needs to be selected for each individual application.
- Bias correction needs to be process-informed.
- Thinking out of the box!

Forthcoming perspective in Nat. Clim. Change Special Issue in Int. J. Climatol. (publ./subm.) Forthcoming book, Cambridge Univ. Press

